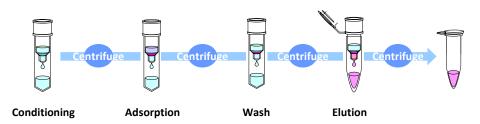


MonoSpin

MonoSpin is a solid-phase extraction spin column that uses silica monoliths with uniform continuum pores. It effectively and rapidly extracts, isolates, purifies, and concentrates samples by centrifugation.

[Features]

- · Easy operation by centrifuge
- Speedy sample treatment with a superb through the pore
- Excellent reproducibility (S-type) even at 100 μL or fewer elution volumes.


Sillica monolith


MonoSpin

Operation method

Short time centrifugation is used to pass the liquid in solid-phase extraction.

The whole sample treatment process can be done within 10 min.

Centrifuge Operation

Shape

MonoSpin series cartridges of different types are available:

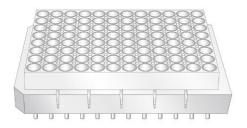
Type S: Excellent for pretreating the sample for 50-800 uL

Type L: Appropriate for sample 0.5-8 mL.

For the details of the varied functional group, please see the next page.

S Type

- Disk size : 4.2 × 1.5 mm
- Sample volume : up to 800 μL
- Elution volume : 50 to 800 μL
- lacktriangle Centrifugation speed : 2,000 to 10,000 imes g

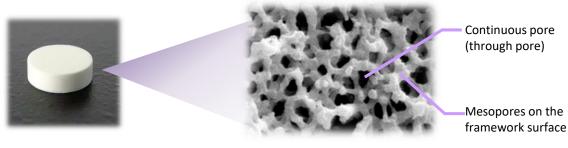


L Type

- Disk size: 9 × 3 mm
- Sample volume: up to 8 mL
- Elution volume : 0.5 to 8 mL
- lacktriangle Centrifugation speed :1,000 \times g NOTE) MonoSpin ProA and MonoSpin ProG have

different shapes. Please see page 16 for details.

96 Well plate type

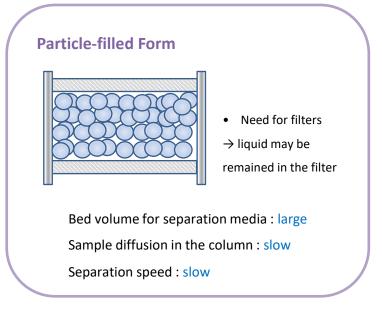


- Sample volume : up to 800 μL
- Elution volume : 50 to 800 μL
- Centrifugation speed: 1,000 to 5,000 × g (can be used in vacuum aspiration)

NOTE) MonoSpin C18 FF, MonoSpin ProA and MonoSpin ProG have different specifications. Please see page 14 and 15 for details.

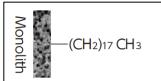
Silica monolith ~ New separation media that are neither particulate nor membrane ~

Silica monoliths are integral silica gels with uniform continuous pores and produced from ethyl silicate. Unlike the particle media, the silica monolith is shaped like a disk. Silica monoliths have high liquid permeability and large surface area as they have through-pores and mesopores on their framework surface. Thus, this state-of-the-art medium is becoming popular worldwide for its properties: high recovery, high performance of adsorption, and desorption.



Silica monolith structure

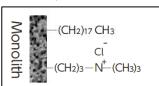
Advantages of Monolithic SPE materials over particle packed SPE materials


- ❖ Disk-shaped silica monoliths do not use frits to hold particle media in traditional solid-phase extraction cartridges.
- Monolithic material has a massive surface area, making it possible to reduce the sample volume. Silica monoliths makes it possible to retain samples in the cartridge and completely elute small samples during processing.
- Despite its high liquid permeability, it is also suitable for fast elution without losing its high recovery as it achieves rapid sample diffusion and separation.

No filter required Minimized separation media Sample diffusion in the column: fast Separation speed: fast

MonoSpin series lineup

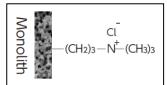
MonoSpin C18/C18 FF


96

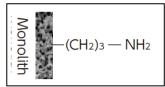
Octadecyl functional group.

Optimal for drug extraction in biological samples and desalting and enrichment of peptide samples.

High-flow (FF) designs are also available.

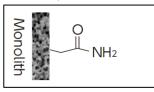

MonoSpin C18-AX

It is a mix mode type in which both octadecyl and quaternary ammonium groups are chemically bonded. It can reliably retain bio-samples at high salt concentrations and is particularly suitable for the recovery of acidic drugs.

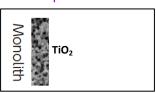

MonoSpin SAX

Bond with Trimethyl aminopropyl, combining strong anion exchange and weak hydrophobic interaction. It is best for extracting acidic drugs.

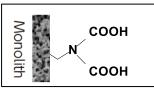
MonoSpin NH2



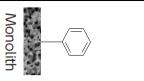
It is bonded with aminopropyl and is beneficial for enriching the sugar chain or hydrophilic compounds by HILIC mode.


MonoSpin Amide

It is bonded with an amide group. MonoSpin amide is best for extracting sugar chains and various acidic and basic hydrophilic compounds by HILIC mode.

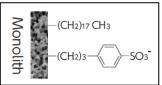

MonoSpin TiO

S


It is characterized by a monolith skeleton coated with dioxide titanium. It is excellent for enriching phosphopeptides.

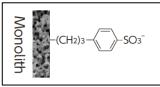
MonoSpin ME

It is bonded with iminodiacetic acid groups. Therefore, it is optimal for the recovery of trace metals in samples.


MonoSpin Ph

S

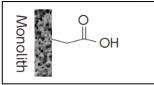
The phenyl group is chemically bonded, which makes it feasible to use weaker hydrophobicity than C18. Therefore, it is suitable for the recovery of hydrophobic drugs from biological samples under reversed phase mode.


MonoSpin C18-CX

S 96

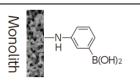
Its octadecyl and benzenesulfonic acid groups are bonded. Thus, purifying dissociated basic drugs in serum and urine is appropriate. Compared with MonoSpin C18 and SCX alone, SCX has higher cleanup efficacy as it works as hydrophobic and ion-exchange interactions.

MonoSpin SCX



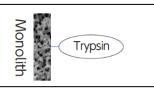
S

It is bonded with propyl benzene sulfonic acid, combining strong cation exchange and hydrophobic interaction. Therefore. MonoSpin SCX is excellent for extracting basic drugs.


MonoSpin CBA

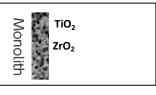
It is bonded with propyl benzene sulfonic acid, combining strong cation exchange and hydrophobic interaction. It is excellent for extracting basic drugs.

MonoSpin PBA



S 96

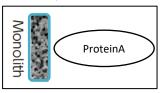
It is bonded with phenyl boric acid, which gives you higher selectivity. Hence, MonoSpin PBA is excellent for extracting cis diol compounds, such as catechol amines.


MonoSpin Trypsin

S

The columns are immobilized with trypsin, a digestive protein enzyme. It enables the rapid digestion of proteins.

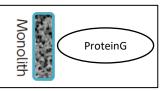
MonoSpin Phospholipid



S L

· · · see the page 13

It has a phospholipid removal column coated with titanium dioxide and zirconium dioxide on a silica monolith. It adsorbed phospholipids in samples with an easy pretreatment.


MonoSpin ProA

96 · · · See page 16

It contains protein A, which is immobilized on the monolith. Therefore, it enables the efficient purification of

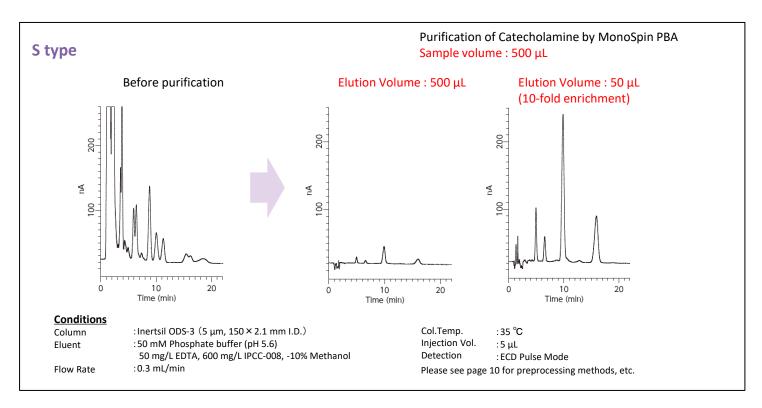
MonoSpin ProG

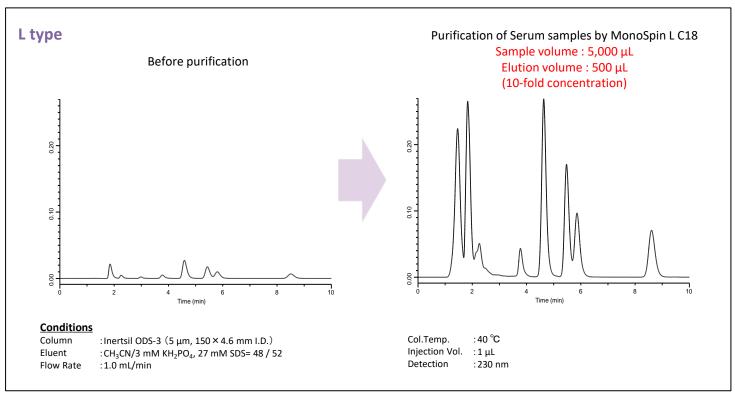
· · · see the page 16

The protein G is immobilized on the monolith. Therefore, it enables the efficient purification of antibodies.

S: S-type column products L: L-type column products

antibodies.


96 : 96-well plate-type product


Characteristics of MonoSpin Series

Purification and Enrichment of Trace Analytes

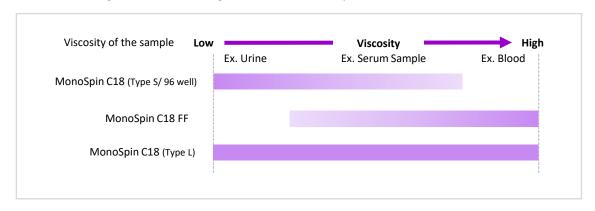
Due to its high permeability, the MonoSpin series enables quicker and more efficient purification and enrichment with centrifugation.

It is also recommended to elution small volume samples, and trace analytes can be collected without dilution.

Physical properties of MonoSpin series

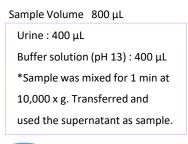
Product name	Functional Group	S Type / 9 Through pore (µm)		L Type Through pore (µm)		Surface Area (m²/g)		Bed Capacity (For type S)
MonoSpin C18	Octadecyl group	5	10	10	10	350	100 μg	Amitriptyline
MonoSpin C18 FF	Octadecyl group	20	15	10	10	300	50 μg	Amitriptyline
MonoSpin Ph	Phenyl group	5	10	-	-	350	100 μg	Amitriptyline
MonoSpin C18-AX	Octadecyl group, Quaternary ammonium	5	10	-	-	350	100 μg	Ibuprofen
MonoSpin C18-CX	Octadecyl group, Benzenesulfonic acid group	5	10	-	-	350	100 μg	Amitriptyline
MonoSpin SAX	Trimethylaminopropyl group	5	10	10	10	350	100 μg	Ibuprofen
MonoSpin SCX	Propylbenzenesulfonic acid group	5	10	10	10	350	100 μg	Amitriptyline
MonoSpin NH2	Aminopropyl-group	5	10	10	10	350	100 μg	Maltopentaose
MonoSpin CBA	Carboxyl group	5	10	10	10	350	100 μg	Amitriptyline
MonoSpin Amide	Amide group	5	10	-	-	350	100 μg	Angiotensin II
MonoSpin PBA	Phenylboronic acids	5	10	-	-	350	100 μg	Dopamine
MonoSpin TiO	Titanium dioxide	20	15	-	-	200	40 μg	Adenosine monophosphate
MonoSpin Trypsin	Trypsin	5	10	-	-	100	-	-
MonoSpin ME	Iminodiacetic acid group	5	10	10	10	350	25 μg	Cu ions
MonoSpin Phospholipid	Titanium dioxide Zicronium dioxide	5	10	10	10	350	10 μL	Human serum
MonoSpin ProA	Protein A	2	60	2	60	-	400 μg	Human IgG
MonoSpin ProG	Protein G	2	60	2	60	-	300 μg	Human IgG

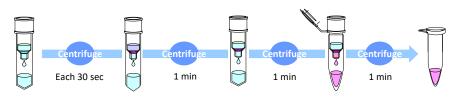
Specifications for Shape and Type


Туре	MonoSpin S type*1	MonoSpin FF*2	MonoSpin L type	MonoSpin 96 well type
Disk size	4.2 × 1.5 mm	4.2 × 1.5 mm	9 × 3 mm	4.2 × 1.5 mm
Sample Volume	Up to 800 μL	Up to 800 μL	Up to 8 mL	Up to 800 μL
Elution Volume	50 to 800 μL	50 to 800 μL	0.5 to 8 mL	100 to 800 μL
Centrifugal force	2,000 to 10,000 × g	1,000 × g	1,000 × g	1,000 to 5,000 × g

^{* 1:}MoSpin ProA and MonoSpin ProG are different in specifications. Please refer to page 15 for the details.

The Viscosity of the Sample


The MonoSpin series is optimized as a spin column for pretreatment of biological samples. If you are working on very viscous samples such as blood, MonoSpin C18 FF is the best choice.


Please refer to the following chart for choosing the suitable MonoSpin.

^{* 2:}FF type is available for MonoSpin C18 FF only.

Purification of Amphetamines in urine using MonoSpin C18

1. Conditioning

① Methanol 300 µL 2 Buffer (pH 13) 300 µL $(1) \rightarrow Centrifuge \rightarrow 2$

2. Adsorption Sample solution 800 μL

3. Wash Buffer (pH 13) Methanol-0.1 % Formic acid 300 μL

4. Elution (1:1, v/v) 100 μL **Purified sample**

Centrifuge : $5,000 \times g$

2 1600000 1400000 1200000 1000000 800000 600000 400000 200000 6 10 12 14 8

X Data provided by Dr. Namera, Hiroshima University

Conditions

Column :InertSustainSwift C18 (3 μ m, 150 imes 2.1 mm I.D.)

Eluent : A)10 mM HCOONH₄(pH 3.3)

B) CH₃OH

A/B = 90/10 - 2 min - 90/10 - 13 min - 70/30, v/v

:0.3 mL/min Flow Rate Col. Temp. :40 °C Detection : LC/MS

Sample : 1. Norephedrine 2. Ephedrine

5. Methamphetamine 6. 3,4-methylenedioxyamphetamine

3. Methylephedrine

7. 3,4-methylenedioxymethamphetamine

4. Amphetamine

Recovery of drugs in biological samples using MonoSpin C18

Serum: 200 µL

10 mM potassium phosphate:

400 μL (pH 7.0)

* Sample was mixed for 1 min at $10,000 \times g$. Transferred and used the supernatant as sample.

Centrifuge: $2,300 \times g$

① Methanol 300 µL 210 mM Potassium

Sample solution 600 µL

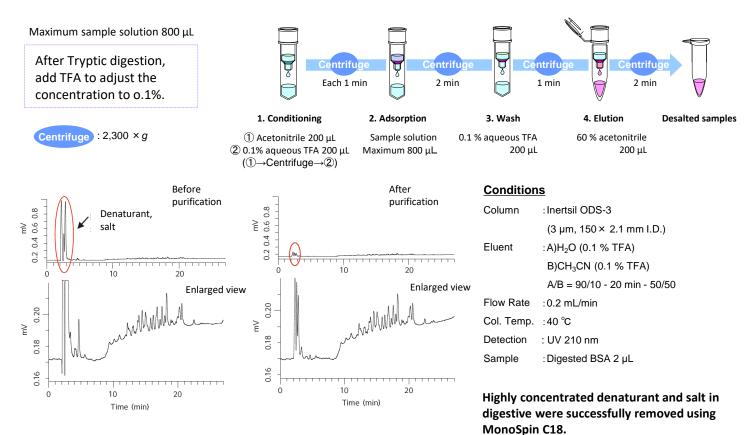
Water 300 µL

Acetonitrile 200 μL

Purified sample

phosphate (pH 7.0) 300 µL

 $(1) \rightarrow Centrifuge \rightarrow (2)$


Day-to-day reproducibility of the drug in serum using MonoSpin C18 (3 days, n = 10).

Sample	Concentration (ng/mL)	Recovery rate (%)	RSD (%)
	5	91.2	4.8
Desipramine	10	86.1	3.3
Desipiamine	50	85.2	5.9
	250	88.4	6.5
	5	96.3	9.5
Iminromino	10	95.8	1.5
Imipramine	50	94.5	0.9
	250	95.9	0.9
	5	96.8	11.6
<u> </u>	10	87.1	5.0
Fluvoxamine	50	86.8	8.1
	250	87.5	9.7

Sample	Concentration (ng/mL)	Recovery rate (%)	RSD (%)
	5	83.7	3.9
Paroxetine	10	84.1	7.8
Paroxettine	50	83.9	8.2
	250	86.7	7.5
	5	85.7	8.1
Mannatilina	10	84.7	3.2
Maprotiline	50	88.6	5.4
	250	87.5	7.7
	5	106.3	9.9
Dulawatina	10	104.8	6.7
Duloxetine	50	99.8	8.7
	250	99.8	6.0

Sample	Concentration (ng/mL)	Recovery rate (%)	RSD (%)
	5	83.7	7.0
A mitriptuling	10	81.8	2.8
Amitriptyline	50	83.8	3.0
	250	88.4	2.7
	5	97.9	9.0
Culpirido	10	95.5	8.5
Sulpiride	50	90.8	2.6
	250	92.6	3.0

Desalination of protein digestion using MonoSpin C18

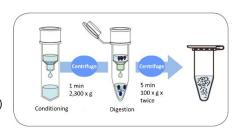
Rapid Digestion of BSAs by MonoSpin's Trypsin HP

■ Ex. Reductive alkylation protocol

1 mg bovine serum-albumin

---- 500 mM Tris-HCL(pH 8. 0)-- 8M urea (Solution 1): 175μL

---- 40 mg/mL Dithiothreitol in Solution 1: 25μL


----- Incubation at 37 °C for 90 min

---- 40 mg/mL lodoacetamide in Solution 1: 50μL

---- Incubation at 37 °C for 30 min (under shaded conditions)

Reductive alkylation of proteins: 250µL

---- Dilute with 50mM Ammonium bicarbonate to adjust the urea to 2M: 750µL

Conditions

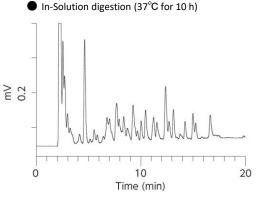
Column : Inertsil ODS-3

(3 μ m, 150 × 2.1 mm I.D.) Eluent :A)H₂O (0.1 %HCOOH)

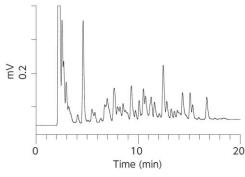
B)CH₃CN (0.1 %HCOOH)

: Digested BSA 2 µL

A/B = 90/10 - 20 min - 50/50


Flow Rate :0.2 mL/min
Col. Temp. :40 °C

Col. Temp. :40 °C

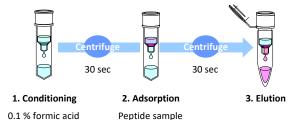

Detection :UV 210 nm

Sample :Disperted RS

MonoSpin Trypsin HP NOTE) The method of reductive alkylation should be optimized depending on the type of protein.

Digested with MonoSpin Trypsin HP(at 25°C for 10 min)

Trypsin-immobilized spin column can complete the process just in 10 min.


NOTE) For digestion, be sure to use protein after reductive alkylation.

Fractionation of Protein digests using MonoSpin SCX

The use of spin columns and elution salt concentration stepwise makes it feasible to fractionate peptides without using 2D-LC or other complex systems.

Sample Volume: 500 µL

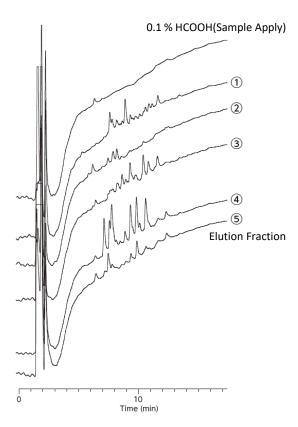
Used Peptide sample dissolved in 0.1% Formic acid after desalting with MonoSpin C18.

500 uL

: 10,000 × g Centrifuge

Apply the eluent, centrifuge, and then attach a new tube to apply the next eluent.

300 uL

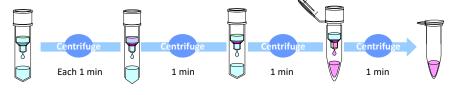

Each eluate composition

 125 mM HCOONH_4 200 μ L 4500 mM HCOONH₄ 200 μL $250 \text{ mM HCOONH}_4 200 \,\mu\text{L}$ ⑤1 M HCOONH₄

 $3100 \, \text{mM} \, \text{HCOONH}_4 \, 200 \, \mu \text{L}$ Injection) Each solution contains 10% acetonitrile.

Conditions

Column : Inertsil ODS-3 (3 μ m, 2.1 \times 150 mm) Detection : UV 210 nm : A)H₂O (0.1 % HCOOH) Eluent Flow Rate :0.2 mL/min B)CH₃CN (0.1 % HCOOH) :40 °C Col. Temp. $A/B = 90/10 - 20 \min - 50/50$ Injection Vol. : 2 μL



Purification of pyridylaminated glycans using MonoSpin's NH2

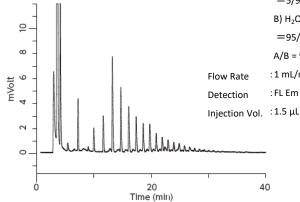
Sample volume: 800 µL

Dissolve the sample to adjust the concentration of ACN to 90~95%.

Centrifuge : $2,300 \times g$

1. Conditioning 1 50 % acetonitrile (0.1 % formic acid) 500 μL

2 90 % acetonitrile (0.1 % formic acid) 500 uL $(1) \rightarrow Centrifuge \rightarrow (2)$


2. Adsorption Sample solution 800 μL

3. Wash 90 % acetonitrile (0.1 % formic acid) 500 μL

4. Elution 50 % acetonitrile (0.1 % formic acid) 50 - 800 μL **Purified sample**

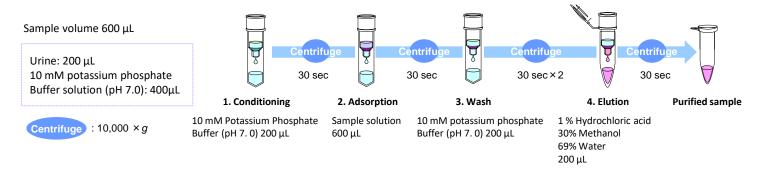
Purified with MonoSpin NH2

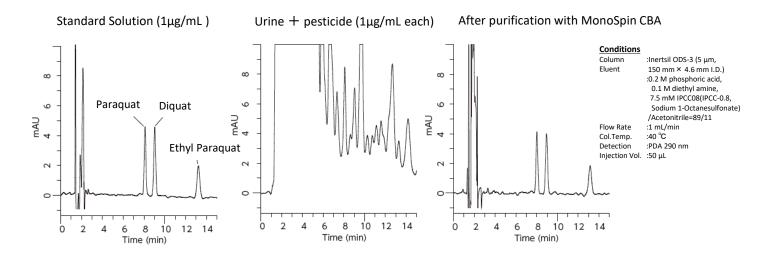
Before purification 0 ω 20 Time (min)

: NH₂ Column (5 μ m, 250 \times 4.6 mm I.D.) Column

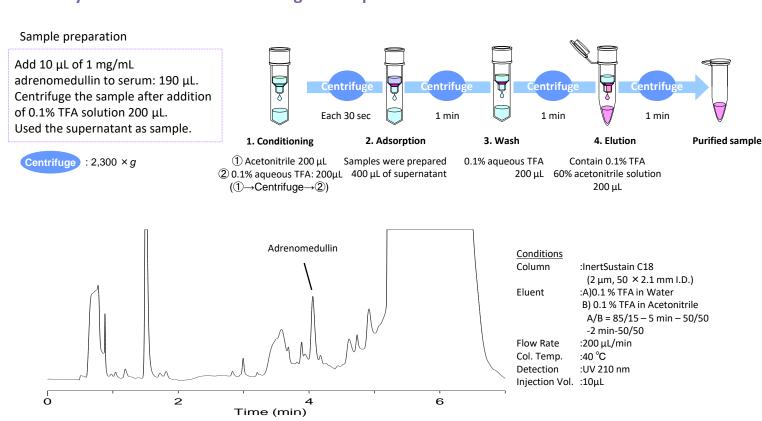
: A)H2O/CH3CN Eluent =5/95 0.1 % HCOOH B) H₂O/CH₃CN

=95/5 0.1 % HCOOH

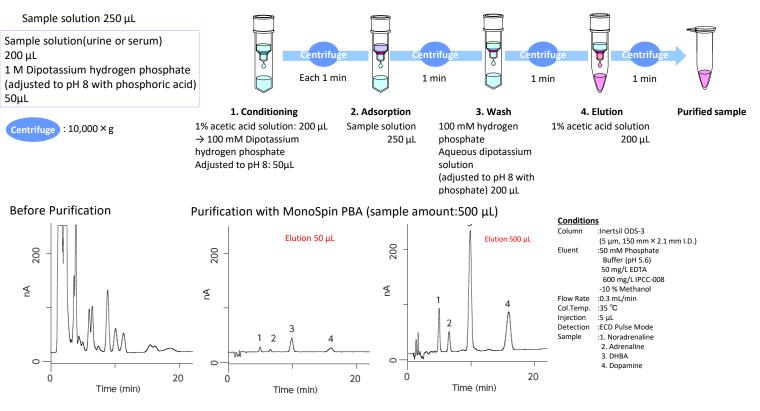

A/B = 90/10-10 min-90/10-40 min-60/40


:1 mL/min

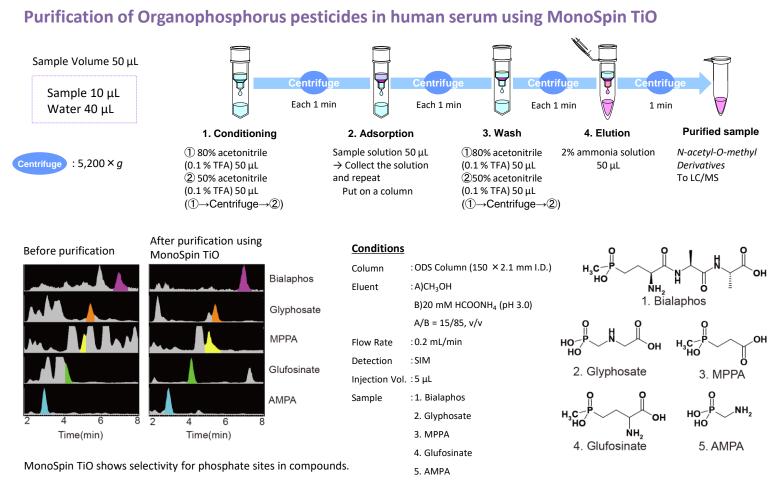
Conditions


: FL Em 320 nm, Ex 400 nm

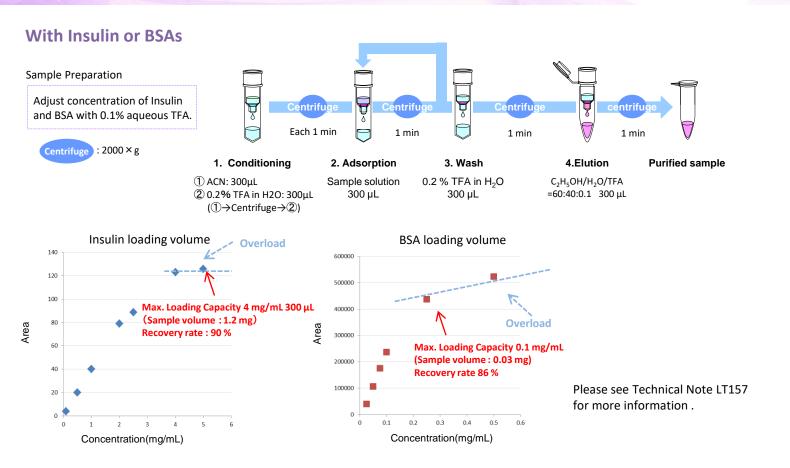
Purification of Paraquat and Diquat using MonoSpin CBA

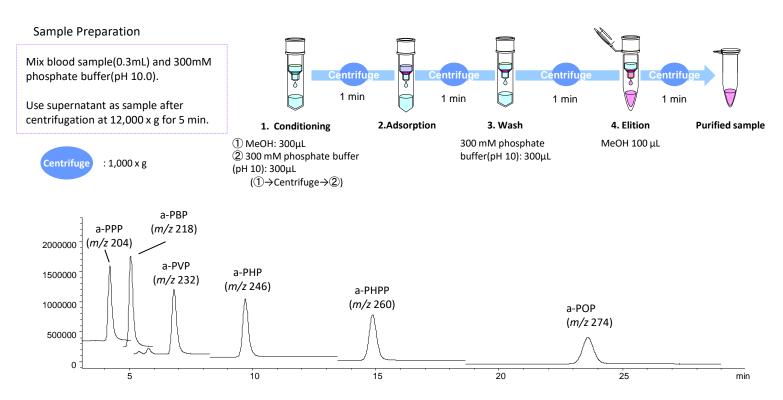


Recovery of hormones in serum using MonoSpin C18



Application


Purification of Catecholamines using MonoSpin PBA


By using MonoSpin PBA, we can selectively recover and purify compounds with cis-type diols such as catecholamines. See our website Technical Note LT093 for more information.

Application

Analysis of blood samples using MonoSpin C18FF

Conditions

Column : InertSustain Phenyl (3 μm, 150 × 2.1 mm I.D.)

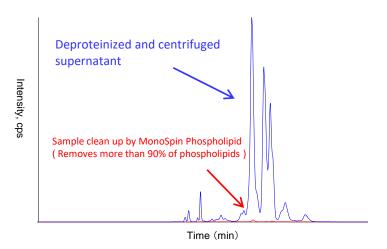
Eluent : $CH_3CN-HCOONH_4(10 \text{ mM}, 0.1 \% HCOOH) = 25:75 (v/v)$

Flow Rate : 0.2 mL/min

Col. Temp. : 40 °C

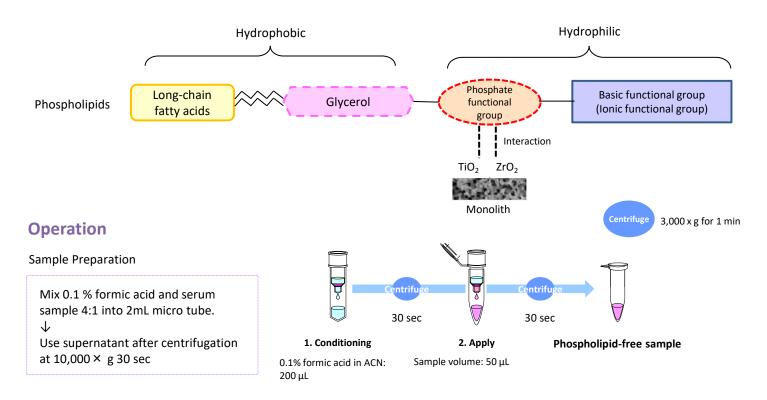
Detection : MS(ESI)

MonoSpin Phospholipid


Phospholipid removal column coated with titanium dioxide and zirconium dioxide on silica monolith. It adsorbs phospholipids in samples such as blood and serum with easy pretreatment. More significantly, the adsorbed phospholipids can also be collected very well.

Cartridge shape: S-type, L type

Functional groups: titanium dioxide, zirconium dioxide


[Features]

- Phospholipids in the biological sample can be removed in few easy steps.
- The matrix effect is reduced considerably since it removes more than 90% of Phospholipids.
- Capable of processing small volume sample
- Adsorbed phospholipids are easily recovered.

Adsorption principle

The specific interaction of the metal oxide and phosphate compound retains the phospholipids in the packing material.

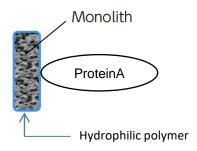
Related Product

The FastRemover for Phospholipid 96-well plate delivers a fast and efficient removal of proteins and phospholipids in plasma and serum samples without sacrificing the recovery of your target analytes.

Publicly Available Reference

ctional gro	· · · · · · · · · · · · · · · · · · ·	Reference
	[1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1- naphthalenyl)methanone (MAM-2201)	Forensic Toxicol., 2013, 31(2), 333–337
	α -Pyrrolidinovalerophenone	Forensic Toxicol., 2014, 32(1), 68–74
	25-Hydroxyvitamin D3	Anal. Sci., 2018, 34(9), 1043-1047
	Aconitines and Colchicine	Chromatographia, 2015, 78(15), 1041–1048
	Amphetamines	J. Chromatogr. A, 2008, 1208(1-2), 71-75
	Amphetamines	Anal. Chim. Acta, 2010, 661(1), 42-46
	a-Pyrrolidinovalerophenone (a-PVP) and a-pyrrolidinobutiophenone (a-PBP)	Forensic Toxicol., 2014, 32, 68-74
	Desalting	Amino Acids., 2018, 50(1), 117–124
	Desalting	Org. Biomol. Chem., 2018, 17(1), 165-171
	Desalting	J. Proteomics, 2018, 181, 238-248
	Desalting	J. Pept. Sci., 2018, 24(12), e3133
	Desalting of LaIT1	Mass Spectrometry, 2017, 6(1), A0059
	Desalting of LaIT1	J. Pept. Sci., 2015, 21(8), 636-643
	Dibucaine Naphazoline	J. Chromatogr. B, 2008, 872, (1-2), 186-190
	Diquat, Paraquat	Anal. Bioanal. Chem., 2011, 400(1), 25–31
	Diquat, Paraquat	Anal. Bioanal. Chem., 2011, 400(1), 25-31
	Drugs	J. Chromatogr. B, 2008, 867(1), 99-104
	Drugs	Chromatographia, 2009, 70(3), 519-526
	-	
	Eperisone, Tolperisone	J.Health Sci., 2010, 56(5), 598-605
	Eperisone, Tolperisone, and Tizanidine	J.AOAC Int. 2014, 97(6), 1546-1551
	Flavonoid	J. Chem. Ecol. 2016, 42(12), 1226-1236
	glucocorticoids	J. Chromatogr. B, 2017, 1057, 62-69
	Iodide	Am. J. Mod. Chromatogr., 2015, 2(1), 1-6
	iTRAQ labeled desalting	Int. J. Oncol., 2015, 47(1), 384-390
	Liraglutide	J. Chromatogr. B, 2018, 109, 29-35
	MAM-2201	Forensic Toxicology. 2013, 31(2), 333–337
	Medicinal toxicants	J. Clin. Pharm. Ther., 2017, 42(4), 454-460
C10	N-1-Naphthalenyl-1-pentyl-1H-indole-3-carboxamide	Forensic Toxicol., 2015, 33(1), 165–169
C18	Nanoparticles	J. Chromatogr. A, 2015, 1404, 141-145
	Naringin	J. Clin. Pharmacol., 2013, 53(7), 738-745
	Organophosphorus compounds	Anal. Sci., 2011, 27(10), 999-1005
	Oxidized phospholipids	J. Lipid. Res., 2017, 58(11), 2229-2237
	oxPUFAs	Sci. Rep., 2018, 8, 7954
	Peptides	Cancer Res., 2017, 77(4), 926-936
	Peptides	Bio protocol. 2015, 5(8), 2015
	Peptides	Clin. Exp. Nephrol., 2018, 22(4), 782–788
	Peptides	Biosci. Biotechnol. Biochem., 2017, 81(12), 2237-2243
		Methods Mol. Biol. 2018, 1696, 91-105
	Peptides	, ,
	Peptides	Biosci. Biotechnol. Biochem., 2018, 82(8), 1309-1315
	Peptides	Data Brief., 2018, 31(17), 604-609
	Peptides	Data Brief., 2017, 12(11), 252-257
	Peptides	Bioresour. Technol., 2018, 254, 278-283
	Peptides	Biomass Bioenergy, 2016, 91, 83-90
	Peptides	Neurogenetics, 2019, 20(1), 9-25
	Peptides	J. Proteomics, 2015, 119, 183-195
	Peptides	Proc. Natl. Acad. Sci., 2018, 115(14), 3646-3651
	Peptides	Oncogene, 2017, 36(26), 3740-3748. doi: 10.1038/onc.2016.52
	Peptides	Sci. Rep., 2018, 22, 8(1), 1303
	Peptides	Sci. Rep., 2016, 6, 26723
	Peptides	Proteomics, 2013, 13(5), 751-755
	Peptides	J. Proteomics., 2013, 84(12), 40-51
	Phthalate esters	J. Pharm. Anal., 2011, 1(2), 92-99
	Phthalates	J. Pharm. Anal., 2011, 1(2), 92-99
	Plant samples	Sci. Rep., 2017, 7(1), 1243. doi: 10.1038/s41598-017-01390-3
	Purines	Nucleosides Nucleotides Nucleic Acids, 2018, 37(6), 348-352
	Pyrrolidinophenone type designer	J. Chromatogr. B, 2013, 30, 942-943
		-
	Pyrrolidinophenone-type designer drugs	J. Chromatogr. B, 2013, 942-943, 15-20
	review	Bioanalysis., 2015, 7(17), 2171-2176

Publicly Available Reference


Functional grou	· · · · · · · · · · · · · · · · · · ·	Reference
C18 FF	Drugs	J. Chromatogr. A, 2017, 1517, 9-17
C18, C18CX	Cardiovascular drug	Acta Chromatographica, https://doi.org/10.1556/1326.2018.00493
C18, SCX	Melamine	J. Anal. Sci. Meth. Instrum., 2012, 2, 68-73
	Peptides	Sci. Rep., 2017, 7(1), 11137
C18, TiO	Peptides	Int. J. Mol. Sci., 2018, 19(9), 2655
C18, SAX	Aamphetamines, Opiates, and THC	Forensic Toxicol., 2013, 31(2), 312–321
C18-AX	Oxidized Fatty Acids	Mod. Chem. Appl., 2015, 3, 3
	Arsenite, Arsenate, and Methylarsenate	J. Sep. Sci., 2012, 35(18), 2506-2513
C18-CX	Clean up	J. Occup. Health., 2018, 60(2), 140-147
CIO CX	Drugs	J. Sep. Sci., 2011, 34(16-17), 2232-2239
	Halogenated compounds	Toxicology, 2013, 314(1), 22-9
Amide	PA-labelled glycans	Bicsci. Biotechnol. Biochem., 2012, 76(10), 1982-1983
CBA	clenbuterol	Talanta, 2018, 186, 521-526
CBA, Amide	Tetrodotoxin	Chromatographia, 2014, 77, (9-10), 687–693
	nanoparticles	J. Sep. Sci., 2015, 38, 283–290
	Oligosaccharides	Sci Rep. 2017, 26(7) :46099. doi
NH2	PA labeled N-glycans	Glycoconj. J., 2017, 34(4), 537-544
	PA-labelled glycans	Plant Biotechnol. J., 2016, 14(8), 1682-1694
	Pyridylaminated Oligosaccharides	Anal. Sci., 2016, 32(5), 487-490
	Adenosine	Biosens. Bioelectron., 2013, 15(41), 379-385
	Allergenic ingredients	Food Control, 2018, 84, 89-96
	Catecholamines	J. Comp. Neurol., 2016, 524(18), 3849-3864
	Catecholamines	Food Chem., 2019, 276, 376-382
	Catecholamines	EBioMedicine., 2016, 8, 60-71
	Catecholamines	
DDA	Catecholamines	PLoS One, 2018, 13(7), e0201203
PBA		J. Chromatogr. B, 2015, 985, 142-148
	Catecholamines	Biol. Pharm. Bull., 2017, 40(2), 227-233
	Catecholamines	Biosci. Biotechnol. Biochem., 2018, 82(3), 497-506
	Cis-diol groups	Anal. Chim. Acta., 2015, 857(1), 64-70
	hippocampal monoamines	J. Pharmacol. Sci., 2016, 132(4), 249-254
	Pyridylamino monosaccharide	Bicsci. Biotechnol. Biochem., 2011, 75(7), 1405-1407
	Serotonine and Noradrenaline	Br. J. Pharmacol., 2015, 172(5), 1250-1262
Phospholipid	Farnesyl pyrophosphate	Anal. Bioanal. Chem., 2017, 409(14), 3551–3560
ProteinA, G	IgG	Biochimie., 2018, 145, 113-124
	IgG	Virology, 2019, 15, 527, 132-140
ProteinG	IgG	PLoS One, 2017, 12(7):e0181181
	IgG	Bioanalysis, 2018, 10(18), 1501-1510
	Alendronate	Legal. Medicine, 2018, 30, 14-20
SAX	Deoxyribonucleoside	Biotechnol., 2016, 228, 52-57.
37.00	metabolite of 18 F-THK5351	Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(12), 2211-2218
	Urinary excretion	Nucleosides Nucleotides Nucleic Acids. 2016, 35(10-12), 559-565.
	Amino acid	Psychiatry Res., 2016, 238, 203-210
	Amino acid	J. Sep. Sci., 2014, 37(16), 2087-2094
	Amino acid	Sci. Rep., 2018, 8(1), 14587
	Amino acid	Orig. Life Evol. Biosph., 2013, 43(2), 99-108
SCX	Angiogenic peptide	BioSci. Trends, 2016, 10(6), 500-506
	Fluoresence derivatization	Biomed. Chromatogr., 2012, 26(2), 147-151
	iTRAQ-labeled peptides	Biochim. Biophys. Acta, 2018, 1865(6), 874-888
	Methylated lysine	Anal. Bioanal. Chem., 2018, 410(17), 4189–4194
	Morphine, Codeine, Dihydrocodeine	J. AOAC Int., 2011, 94(3), 765-774.
TiO	Glyphosate	Acta Chromatographica, https://doi.org/10.1556/1326.2018.00513
	Protein digestion	J. Am. Chem. Soc., 2018, 140(38), 11982-11991
Trypsin	Protein digestion	Anal. Sci., 2018, 34(4), 397-406
	review	Forensic Toxicol., 2010, 28(2), 61–68
	review	Trac. Trends Anal. Chem., 2013, 45, 182-196
		Electrophoresis. 2017, 38(22-23), 2851-2869
	review	
	review	Chromatogr., 2015, 2(1), 79-95
	review	J. Pharm. Biomed. Anal., 2018, 161, 51-60

MonoSpin ProA and MonoSpin ProG are already immobilized onto a silica monolith offering rapid purification of antibodies. Additionally, a 96-well plate format is available to purify a multi-analyte. Each reagent for the purification of samples is attached.

[Features]

The silica is modified with a hydrophilic polymer and then immobilized with either Protein A or Protein G to prevent the adsorption of proteins, resulting in higher purification and recovery of antibodies.

Silica monolith surfaces immobilized with Protein A and Protein G have modified hydrophilic polymers, suppressing the non-specific adsorption of proteins and allowing the recovery of purer antibodies.

(Specification)

Through-pore size $: 2 \mu m$ Meso-pore size : 60 nm

Disk size $\pm 4.2 \times 1.5 \text{ mm}$

Sample Volume : $500 \, \mu L$ Sample Volume : $50 \, \mu L$ Centrifugation speed : $2,300 \times g^*$ Recovery rates : $400 \, \mu g \, (lgG)$

*:96-well plate type can also be used with vacuum aspiration (e.g., -0.015 MPa).

Shapes

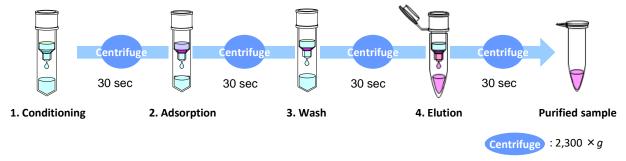
Spin Column Type

- Purification with compact tabletop centrifuge just in two minutes (e.g., $2,300 \times g$)
- Appropriate for purification of small volume sample (approximately 0.4 mg)

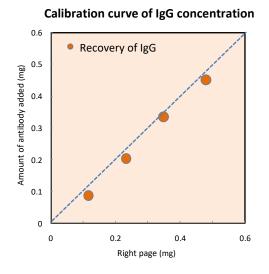
Large Spin Column

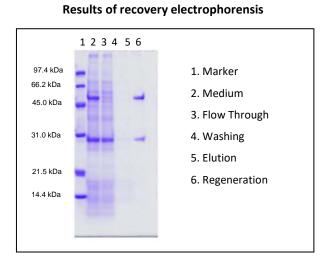
 Maximum 16 mg antibody can be recovered by centrifuge.

96 Well plate type

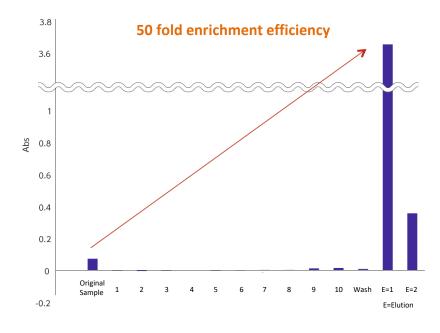


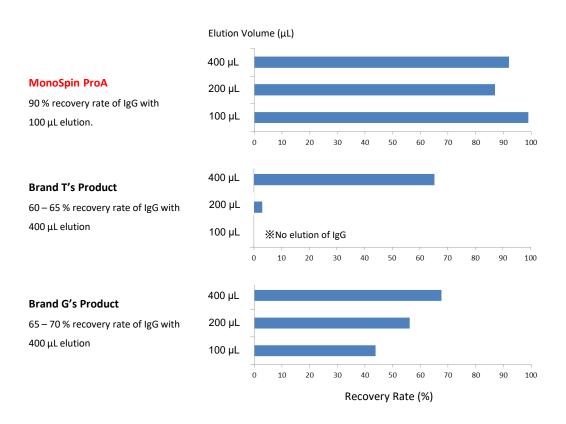
- Purification by both aspiration or centrifuge
- Available for a multi-analyte with the same spin column volume.


Ultra-high-speed processing ensures stable recovery

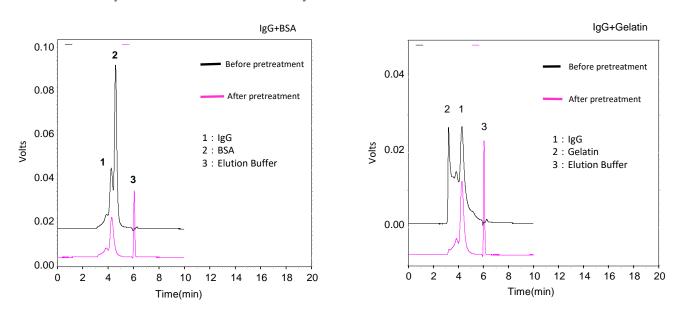

Antibodies can be easily purified by centrifugation in a short time in a tabletop centrifuge With silica monoliths.

When collecting antibodies, the neutralizing solution can be added to the collection tube in advance to immediately neutralize the antibodies collected by the acid immediately. This action greatly reduces the risk of antibody degeneration.


As shown below, the antibody concentrations were determined quantitatively from the medium of CHOcells. The purified antibodies show very few impurities by the results of electrophoresis.

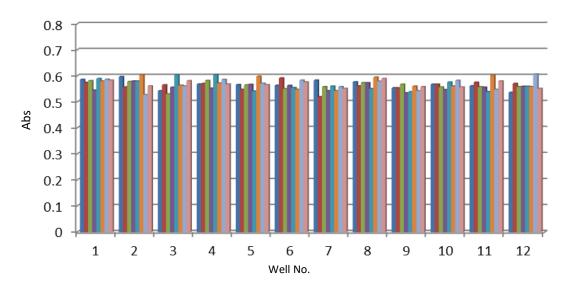

Enrichment of Antibody Solution Using MonoSpin ProA

Human IgG solution (500 μ L of 0.025 mg/mL) was applied to a MonoSpin ProG spin column 10 times (In = I1–I10). Then, the elution of IgG concentration was determined twice with 100 μ L elution buffer (En = E1 and E2). The first IgG elution (E1) was 50 fold concentration of the standard solution and indicates a 90% recovery of IgG without loss.



Elution Volume and Recovery Rate Comparing with Other Brands Products

MonoSpin ProA needs only 100 μ L elution buffer to obtain a recovery rate of at least 90% IgG. However, other brands' products require 400 μ L or more elution buffer with a recovery rate of 70% IgG.



Removal of preservatives in antibody solutions

MonoSpin ProA/ProG enables you to remove proteins such as BSA and Gelatin in antibody solutions without dilution.

Recovery of antibodies from CHO cell culture medium (96-well plate)

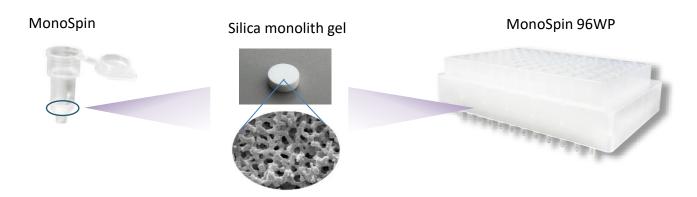
Sample volume : 150 μ L Elution volume : 150 μ L

Recovery rate : 90% (CV 3.1 %) IgG concentration : 1.3 mg/mL

Purification of multiple antibodies using MonoSpin L and ProA

Procedure

- 1. Apply 5 mL of equilibration buffer.
- 2. Apply sample (Max. 8 mL) after filtration through 0.2 μ L filtration.
- 3. Apply 5 mL of washing buffer.
- 4. Apply 5 mL of elution buffer.


Centrifugal force at each step: 1,500 x g, 2 min

* MonoSpin ProA/G buffer kit was used.

MonoSpin 96 Well Plate

MonoSpin 96WP is a multi-specimen pretreatment plate with immobilized silica monolith disks. The same monolithic disks earlier used in MonoSpin have been fixed and designed to specifications that facilitate the same amount of load and results as when spin columns are used.

[Features]

- Fix the same gels as MonoSpin spin columns to a 96-well plate
- Can be used with centrifugal or suction (-0.05 MPa or higher recommended)
- · Rapid pretreatment of biological samples is possible
- Capable of processing solution compositions similar to spin columns
- Extensive lineup

[Application]

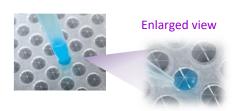
- Desalting, purification, and fractionation of peptide samples
- Protein recovery and purification
- Purification after iTRAQ derivatization

- · Purification of glycans
- Recovery of drugs from biological samples (urine, serum, plasma)
- · Purification of catecholamines
- Recovery and purification of organic acids

Description	Qty.	Cat.No.
MonoSpin 96WP C18	1	5010-21900
MonoSpin 96WP NH2	1	5010-21901
MonoSpin 96WP PBA	1	5010-21902
MonoSpin 96WP SAX	1	5010-21903
MonoSpin 96WP SCX	1	5010-21904
MonoSpin 96WP Amide	1	5010-21905
MonoSpin 96WP CBA	1	5010-21906
MonoSpin 96WP C18-CX	1	5010-21907
MonoSpin 96WP C18-AX	1	5010-21908

96 Deep Well Plate / GL Sticker for 96 well plate

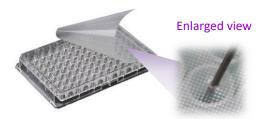
96 Deep Well Plate


[Features]

- Plate dimensions conform to SBS standards for the automatic operation of dispensing machines
- V-bottom well geometry reduces sample loss
- Made of polypropylene with outstanding heat, cold, and solvent resistance
- Low adsorption (LB type) suppresses non-specific adsorption of proteins and peptides by super hydrophilic surface treatment

Description	Material	Qty.	Cat.No.
MS Plate	Polypropylene	50	6045-00201
MS Plate Low adsorption (LB type)	Polypropylene (hydrophobic polymer)	15	6045-00203

GL Sticker for 96 well plate


Evapo Less Slit

[Features]

- Sticker closes automatically after each application.
- Adhesive-free on top of the sticker to prevent contamination.
- Can be operated under -80°C-100°C

Sealing Sticker

[Features]

- High durability against organic solvent
- High air leakage efficiency
- Used to store samples down to −80°C

Description	Material	Qty.	Cat.No.
Evapo Less Slit	PET, Silicon	100	5010-21950
Sealing Sticker	Polyolefin	100	5010-21951

Order Information

MonoSpin type S

Description	Qty.	Cat.No.
MonoSpin C18	50	5010-21700
100103piii C18	100	5010-21701
MonoSpin C18 FF	50	5010-21670
10103piii C18 FF	100	5010-21671
MonoSpin Ph	50	5010-21733
Wollospin Fil	100	5010-21734
MonoSpin C18-AX	50	5010-21735
100103piii C18-AX	100	5010-21736
MonoSpin C18-CX	50	5010-21731
100103piii C18-CX	100	5010-21732
MonoSpin SAX	50	5010-21720
Worldspill SAX	100	5010-21721
MonoSpin SCX	50	5010-21725
Worldspiri Sex	100	5010-21726
MonoSpin NH2	50	5010-21710
101103piii 10112	100	5010-21711
MonoSpin CBA	50	5010-21729
Тионозриг свя	100	5010-21730
MonoSpin Amide	50	5010-21727
World Spiri Amide	100	5010-21728
MonoSpin PBA	50	5010-21715
WorldSpill FBA	100	5010-21716
MonoSpin TiO	50	5010-21705
Monospin no	100	5010-21706
MonoSpin Trypsin HP [KEEP COOL]	30	7510-11302
MonoSpin ME	50	5010-21737
TWOTIOSPITI WIL	100	5010-21738
MonoSpin Phospholipid	50	5010-21698
inionospin rnospinolipia	100	5010-21699

MonoSpin Type S

Recovery tube (1.7 mL)

Liquid waste tube (2 mL)

MonoSpin type S Trial kit

Trial and custom kits are shipped with various columns packaged for initial method development.

Description	Content	Cat.No.
MonoSpin Trial Kit 1	C18, TiO, SCX, SAX 10 each	5010-21740
MonoSpin Trial Kit 2	C18, Amide, CBA, NH2 10 each	5010-21741
MonoSpin Trial Kit 3	SCX, SAX, CBA, NH2 10 each	5010-21742

MonoSpin type L

Description	Qty.	Cat.No.
MonoSpin L C18	30	7510-11320
MonoSpin L SAX	30	7510-11321
MonoSpin L SCX	30	7510-11322
MonoSpin L NH2	30	7510-11323
MonoSpin L CBA	30	7510-11324
MonoSpin L ME	30	7510-11325
MonoSpin L Phospholipid	30	7510-11326

MonoSpin 96 well plate

Description	Qty.	Cat.No.
MonoSpin 96WP C18	1	5010-21900
MonoSpin 96WP NH2	1	5010-21901
MonoSpin 96WP PBA	1	5010-21902
MonoSpin 96WP SAX	1	5010-21903
MonoSpin 96WP SCX	1	5010-21904
MonoSpin 96WP Amide	1	5010-21905
MonoSpin 96WP CBA	1	5010-21906
MonoSpin 96WP C18-CX	1	5010-21907
MonoSpin 96WP C18-AX	1	5010-21908

MonoSpin ProA, MonoSpin ProG

Description		Qty.	Cat.No.
MonoSpin ProA column	[KEEP COOL]	10	7510-11310
MonoSpin ProG column	[KEEP COOL]	10	7510-11311
MonoSpin ProA 96 well plate	[KEEP COOL]	1	7510-11312
MonoSpin ProG 96 well plate	[KEEP COOL]	1	7510-11313
MonoSpin L ProA	[KEEP COOL]	4	7510-11314
MonoSpin L ProG	[KEEP COOL]	4	7510-11315
MonoSpin ProA/G buffer kit	[KEEP COOL]	_	7510-11316

GL Sciences disclaims any and all responsibility for any injury or damage which may be caused by this data directly or indirectly.

We reserve the right to amend this information or data at any time and without any prior announcement. Please note that, in the interests of continuous improvement, models or specifications are subject to change without notice. Please also note that the company name and product name appearing in this catalogue are the trademark or registered

GL Sciences Inc. Japan

22-1 Nishishinjuku 6-chome Shinjuku-ku, Tokyo 163-1130, Japan

Phone: +81-3-5323-6620 Fax: +81-3-5323-6621 Email: world@gls.co.jp Web: www.glsciences.com

GL Sciences Inc. USA

trademark of each corresponding company. In the descriptions in this catalogue, TM and R marks are not used.

4733 Torrance Blvd. Suite 255 Torrance, CA 90503

Phone: +1-310-265-4424
Fax: +1-310-265-4425
Email: info@glsciencesinc.com
Web: www.glsciencesinc.com

GL Sciences B.V.

Dillenburgstraat 7C 5652AM, Eindhoven The Netherlands

Phone: +31-40-254-9531 Email: <u>info@glsciences.eu</u> Web: www.glsciences.eu

GL Sciences (Shanghai)

Limited Tower B, Room 2003 Far East International Plaza No. 317 Xianxia Road, Changning District

Shanghai, China 200051 Phone: +86-21-6278227

Email: contact@glsciences.com.cn
Web: www.glsciences.com.cn

International Distributors

Visit our Website at www.glsciences.com/distributors